Le esplosioni di raggi gamma ad alta energia in genere si verificano nello spazio, in genere nei pressi di buchi neri o di altri fenomeni ad alta energia cosmica. Immaginate che sorpresa quando gli scienziatì a metà degli anni 1990 scoprirono che questi lampi erano presenti proprio qui sulla Terra, in cielo.
Si chiamano Terrestrial Gamma Flashes Ray, o TGFs e si sa molto poco su di loro. Sembra che abbiano un collegamento con i fulmine, ma sono qualcosa di completamente diverso.
"In realtà", afferma Doug Rowland del NASA's Goddard Space Flight Center, "prima del 1990 nessuno sapeva dell'esistenza. Eppure sono i più potenti acceleratori di particelle naturali sulla Terra".
Singole particelle in una TGF possono acquisire una enorme quantità di energia, a volte in eccesso di 20 mega-elettron-volt (MeV). Al contrario, le aurore colorate che illuminano il cielo alle alte latitudini sono alimentate da particelle con meno di un millesimo di tale energia.
In questa fase, ci sono più domande che risposte sui TGFs. Quali sono le cause che scaturiscono flash ad alta energia? Sono fulmini o altro? Potrebbero essere responsabili di alcune delle particelle ad alta energia nelle fasce di Van Allen, che possono danneggiare i satelliti?
Per studiarli, Rowland e i suoi colleghi del GSFC, del Siena College, della Universities Space Research Association e lo Scienze Space Hawk stanno progettando di lanciare un piccolo satellite, chiamato Firefly. nel 2010 o nel 2011. A causa delle sue piccole dimensioni, Firefly costerà meno di 1 milione di dollari, circa 100 volte meno di quello che normalmente costano le missioni satellitari. Una parte dei risparmi del costo deriva dal lancio di Firefly in programma alla National Science Foundation's CubeSat, che lancia piccoli satelliti come "clandestini" a bordo di razzi che trasportano satelliti più grandi nello spazio, piuttosto che richiedere dei propulsori dedidcati.
In caso di successo, Firefly fornirà le prime misurazioni simultanee di TGFs e dei fulmini. La maggior parte di ciò che è conosciuto circa i TGFs fino ad oggi si è appreso dalle missioni che hanno osservato i raggi gamma provenienti dallo spazio profondo, come il NASA Compton Gamma Ray Observatory, che ha scoperto i TGFs nel 1994. Il Compton ha segnalato fugaci segni di raggi gamma con la coda del suo occhio.
I lampi potenti venivano a sorpresa dalla Terra e alla sua atmosfera.
I dati successivi di Compton, dai telescopi spaziali e altri osservatori, hanno fornito un quadro allettante ma incompleto di come TGFs si verificano:
Nei cieli sopra un temporale, potenti campi elettrici generati dalla tempesta vanno verso l'alto per molte miglia nell'atmosfera. Questi campi elettrici accelerano elettroni liberi, ad una velocità prossima a quella della luce. Quando questi ultra elettroni si scontrano ad alta velocità con le molecole in aria, le collisioni generano raggi gamma ad alta energia, con la creazione di una cascata di collisioni e TGFs.
Doug Rowland, ricercatore principale per Firefly si trova accanto alla vita di un modello di dimensioni del satellite minuscoli. Credit: NASA / Pat Izzo
Per l'occhio umano, un TGF probabilmente non sarebbe visibile. A differenza del fulmine, la maggior parte di energia dei TGFs è rilasciata come raggi gamma invisibili, e non è visibile nella luce. Non producono lampi colorati di luce come sprite o fulmini o altri fenomeni collegati. Tuttavia, queste eruzioni invisibili potrebbero contribuire a spiegare perché avvengono fulmini brillanti.
Gli scienziati sanno che le turbolenze all'interno di una nube temporalesca separa cariche elettrica, creata da tensioni enormi. Ma la tensione necessaria per ionizzare l'aria e generare una scintilla è di circa 10 volte maggiore rispetto alla tensione, di solito si trova all'interno delle nuvole in tempesta.
Rowland, dice che sappiamo come le nuvole si caricano ma non sappiamo come si scaricano. Questo è il mistero. I TGFs potrebbero fornire quella scintilla. Generando una scarica veloce del flusso di elettroni, potrebbe aiutare fulmini ad avere inizio. Forse è a causa di questo fenomeno che abbiamo un fulmine.
Se è così, non ci dovrebbero più molti TGFs ogni giorno rispetto a quelli attualmente conosciuti. Le osservazioni di Compton e dei telescopi spaziali di altro tipo indicano che ci possano essere meno di 100 TGFs in tutto il mondo ogni giorno. Un fulmine si scarica milioni di volte al giorno in tutto il mondo.
Questo è un bel divario.
Poi di nuovo, Compton e i telescopi spaziali altri prima di Firefly, non stavano effettivamente cercando i TGFs. Quindi forse non è sorprendente che non ne abbiano trovati molti. Firefly dovrà specificamente cercare lampi di raggi gamma provenienti dall'atmosfera, non dallo spazio, conducendo la prima indagine mirata sui TGFs.
I sensori di Firefly saranno anche in grado di rilevare lampi che sono in gran parte oscurati dall'intervento dell'aria, che è un forte assorbitore di raggi gamma (cosa che protegge le persone a terra dall'energia di questi flash). Firefly offrirà agli scienziati stime molto più precise del numero di TGFs in tutto il mondo e aiutarà a determinare se il collegamento con i fulmini è reale.
Traduzione a cura di Arthur McPaul
Traduzione a cura di Arthur McPaul
English
Firefly Mission to Study Terrestrial Gamma-ray Flashes
January 29, 2010: High-energy bursts of gamma rays typically occur far out in space, perhaps near black holes or other high-energy cosmic phenomena. So imagine scientists' surprise in the mid-1990s when they found these powerful gamma ray flashes happening right here on Earth, in the skies overhead.
They're called Terrestrial Gamma-ray Flashes, or TGFs, and very little is known about them. They seem to have a connection with lightning, but TGFs themselves are something entirely different.
"In fact," says Doug Rowland of NASA's Goddard Space Flight Center, "before the 1990s nobody knew they even existed. And yet they're the most potent natural particle accelerators on Earth."
Individual particles in a TGF acquire a huge amount of energy, sometimes in excess of 20 mega-electron volts (MeV). In contrast, the colorful auroras that light up the skies at high latitudes are powered by particles with less than one thousandth as much energy.
At this stage, there are more questions about TGFs than answers. What causes these high-energy flashes? Do they help trigger lightning--or does lightning trigger them? Could they be responsible for some of the high-energy particles in the Van Allen radiation belts, which can damage satellites?
To investigate, Rowland and his colleagues at GSFC, Siena College, Universities Space Research Association, and the Hawk Institute for Space Sciences are planning to launch a tiny, football-sized satellite called Firefly in 2010 or 2011. Because of its small size, Firefly will cost less than $1 million — about 100 times cheaper than what satellite missions normally cost. Part of the cost savings comes from launching Firefly under the National Science Foundation's CubeSat program, which launches small satellites as "stowaways" aboard rockets carrying larger satellites into space, rather than requiring dedicated rocket launches.
If successful, Firefly will return the first simultaneous measurements of TGFs and lightning. Most of what's known about TGFs to date has been learned from missions meant to observe gamma rays coming from deep space, such as NASA's Compton Gamma Ray Observatory, which discovered TGFs in 1994. As it stared out into space, Compton caught fleeting glimpses of gamma rays out of the corner of its eye, so to speak. The powerful flashes were coming--surprise!--from Earth's atmosphere.
Subsequent data from Compton and other space telescopes have provided a tantalizingly incomplete picture of how TGFs occur: In the skies above a thunderstorm, powerful electric fields generated by the storm stretch upward for many miles into the upper atmosphere. These electric fields accelerate free electrons, whisking them to speeds approaching the speed of light. When these ultra-high speed electrons collide with molecules in the air, the collisions release high-energy gamma rays as well as more electrons, setting up a cascade of collisions and perhaps more TGFs.
To the eye, a TGF probably wouldn't look like much. Unlike lightning, most of a TGF's energy is released as invisible gamma rays, not visible light. They don't produce colorful bursts of light like sprites and other lightning-related phenomena. Nevertheless, these unseen eruptions could help explain why brilliant lightning strikes occur. A longstanding mystery about lightning is how a strike gets started. Scientists know that the turbulence inside a thundercloud separates electric charge, building up enormous voltages. But the voltage needed to ionize air and generate a spark is about 10 times greater than the voltage typically found inside storm clouds.
"We know how the clouds charge up," Rowland says, "we just don't know how they discharge. That is the mystery."
TGFs could provide that spark. By generating a quick burst of electron flow, TGFs might help lightning strikes get started, Rowland suggests. "Perhaps this phenomenon is why we have lightning," he says.
If so, there ought to be many more TGFs each day than currently known. Observations by Compton and other space telescopes indicate that there may be fewer than 100 TGFs worldwide each day. Lightning strikes millions of times per day worldwide. That's quite a gap.
Then again, Compton and other space telescopes before Firefly weren't actually looking for TGFs. So perhaps it's not surprising that they didn't find many. Firefly will specifically look for gamma ray flashes coming from the atmosphere, not space, conducting the first focused survey of TGF activity. Firefly's sensors will even be able to detect flashes that are mostly obscured by the intervening air, which is a strong absorber of gamma rays (a fact that protects people on the ground from the energy in these flashes). Firefly's survey will give scientists much better estimates of the number of TGFs worldwide and help determine if the link to lightning is real.
"In fact," says Doug Rowland of NASA's Goddard Space Flight Center, "before the 1990s nobody knew they even existed. And yet they're the most potent natural particle accelerators on Earth."
Individual particles in a TGF acquire a huge amount of energy, sometimes in excess of 20 mega-electron volts (MeV). In contrast, the colorful auroras that light up the skies at high latitudes are powered by particles with less than one thousandth as much energy.
At this stage, there are more questions about TGFs than answers. What causes these high-energy flashes? Do they help trigger lightning--or does lightning trigger them? Could they be responsible for some of the high-energy particles in the Van Allen radiation belts, which can damage satellites?
To investigate, Rowland and his colleagues at GSFC, Siena College, Universities Space Research Association, and the Hawk Institute for Space Sciences are planning to launch a tiny, football-sized satellite called Firefly in 2010 or 2011. Because of its small size, Firefly will cost less than $1 million — about 100 times cheaper than what satellite missions normally cost. Part of the cost savings comes from launching Firefly under the National Science Foundation's CubeSat program, which launches small satellites as "stowaways" aboard rockets carrying larger satellites into space, rather than requiring dedicated rocket launches.
If successful, Firefly will return the first simultaneous measurements of TGFs and lightning. Most of what's known about TGFs to date has been learned from missions meant to observe gamma rays coming from deep space, such as NASA's Compton Gamma Ray Observatory, which discovered TGFs in 1994. As it stared out into space, Compton caught fleeting glimpses of gamma rays out of the corner of its eye, so to speak. The powerful flashes were coming--surprise!--from Earth's atmosphere.
Subsequent data from Compton and other space telescopes have provided a tantalizingly incomplete picture of how TGFs occur: In the skies above a thunderstorm, powerful electric fields generated by the storm stretch upward for many miles into the upper atmosphere. These electric fields accelerate free electrons, whisking them to speeds approaching the speed of light. When these ultra-high speed electrons collide with molecules in the air, the collisions release high-energy gamma rays as well as more electrons, setting up a cascade of collisions and perhaps more TGFs.
To the eye, a TGF probably wouldn't look like much. Unlike lightning, most of a TGF's energy is released as invisible gamma rays, not visible light. They don't produce colorful bursts of light like sprites and other lightning-related phenomena. Nevertheless, these unseen eruptions could help explain why brilliant lightning strikes occur. A longstanding mystery about lightning is how a strike gets started. Scientists know that the turbulence inside a thundercloud separates electric charge, building up enormous voltages. But the voltage needed to ionize air and generate a spark is about 10 times greater than the voltage typically found inside storm clouds.
"We know how the clouds charge up," Rowland says, "we just don't know how they discharge. That is the mystery."
TGFs could provide that spark. By generating a quick burst of electron flow, TGFs might help lightning strikes get started, Rowland suggests. "Perhaps this phenomenon is why we have lightning," he says.
If so, there ought to be many more TGFs each day than currently known. Observations by Compton and other space telescopes indicate that there may be fewer than 100 TGFs worldwide each day. Lightning strikes millions of times per day worldwide. That's quite a gap.
Then again, Compton and other space telescopes before Firefly weren't actually looking for TGFs. So perhaps it's not surprising that they didn't find many. Firefly will specifically look for gamma ray flashes coming from the atmosphere, not space, conducting the first focused survey of TGF activity. Firefly's sensors will even be able to detect flashes that are mostly obscured by the intervening air, which is a strong absorber of gamma rays (a fact that protects people on the ground from the energy in these flashes). Firefly's survey will give scientists much better estimates of the number of TGFs worldwide and help determine if the link to lightning is real.
link: http://science.nasa.gov/headlines/y2010/29jan_firefly.htm
Moreover, these tools vary in performance correlation.
RispondiEliminaSearch engines give greater value to your website if
you build up massive amounts of backlinks from top ranking websites.
More than anything else, you need to see return on investment.
Also see my website > http://proimblogger.com/ultra-spinnable-articles-review/